引用本文:
曹西华, 宋秀贤, 俞志明. 改性黏土除藻的絮凝形态学特征初步研究[J]. 海洋学报, 2017, 39(6): 33-42

改性黏土除藻的絮凝形态学特征初步研究

曹西华1,2, 宋秀贤1,2, 俞志明1,2
1. 中国科学院海洋研究所 海洋生态与环境科学重点实验室, 山东 青岛 266071;
2. 青岛海洋科学与技术国家实验室 海洋生态与环境科学功能实验室, 山东 青岛 266071
摘要:
在理论上改性黏土絮凝体的形态变化对其除藻过程有指示作用,可作为改性黏土用量和用法调控的依据,本文探讨了现有絮凝颗粒形态学观测与分析方法在改性黏土除藻效率评价上的适用性。借助激光颗粒表征技术和电子显微成像技术,本文观测了改性黏土除藻时的颗粒表面电性、粒径分布、絮凝体结构等絮凝形态学特征,分析了其与除藻效率的相关性。结果表明,现有观测方法可以表征改性导致的黏土颗粒Zeta电位反转、改性前后黏土在不同介质中的颗粒粒级分布差异、以及改性黏土与微藻形成絮凝体的多种显微结构;但由于较大粒径絮体对现有方法观测结果的影响更大,各种黏土的粒径特征与其除藻效率之间没有显著的相关性。现有观测方法获得的改性黏土颗粒形态特征仍不能反映其消除藻细胞的精细过程,特别是由于缺乏有效的絮凝体形态分析方法而导致现有形态参数还不能指示除藻效率的变化,亟需发展适用于改性黏土法除藻过程的颗粒形态分析新方法。
关键词:    赤潮治理;改性黏土;絮凝形态学;絮凝体;观测方法   
收稿日期: 2016-12-14
俞志明,男,研究员,博士生导师,主要从事近海生态环境科学研究。E-mail:zyu@qdio.ac.cn
Tools
PDF (3563 KB) Free
Print this page
Add to favorites
Authors
Articles by 曹西华
Articles by 宋秀贤
Articles by 俞志明
参考文献:
[1] Anderson D M, Anderson P, Bricelj V M, et al. Monitoring and management strategies for harmful algal blooms in coastal waters[R]. Asia Pacific Economic Programme, Intergovernmental Oceanographic Commission of UNESCO, Technical Series No. 59. Paris, France: UNESCO, 2001:183
[2] Anderson D M. Turning back the harmful red tide[J]. Nature, 1997, 388(6642): 513-514.
[3] Yu Zhiming, Zou Jingzhong, Ma Xinian. A new method to improve the capability of clays for removing red tide organisms[J]. Oceanologia et Limnologia Sinica, 1994, 25(2): 226-232.
[4] Yu Zhiming, Zou Jingzhong, Ma Xinian, et al. The chemical means of controlling red tides[J]. Oceanologia et Limnologia Sinica, 1993, 24(3): 314-318.
[5] Yu Zhiming, Song Xiuxian, Zhang Bo, et al. Clay surface modification and its coagulation of red tide organisms[J]. Chinese Science Bulletin, 1999, 44(3): 617-620.
[6] Sengco M R, Li Aishao, Tugend K, et al. Removal of red- and brown-tide cells using clay flocculation. Ⅰ. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens[J]. Marine Ecology Progress Series, 2001, 210: 41-53.
[7] Yu Zhiming, Zou Jingzhong, Ma Xinian. Application of clays to removal of red tide organisms Ⅰ. Coagulation of red tide organisms with clays[J]. Chinese Journal of Oceanology and Limnology, 1994, 12(3): 193-200.
[8] Yu Zhiming, Zou Jingzhong, Ma Xinian. Application of clays to removal of red tide organisms Ⅱ. Coagulation of different species of red tide organisms with montmorillonite and effect of clay pretreatment[J]. Chinese Journal of Oceanology and Limnology, 1994, 12(4): 316-324.
[9] Yu Zhiming, Zou Jingzhong, Ma Xinian. Application of clays to removal of red tide organisms Ⅲ. The coagulation of kaolin on red tide organisms[J]. Chinese Journal of Oceanology and Limnology, 1995, 13(1): 62-70.
[10] Cao Xihua, Song Xiuxian, Yu Zhiming, et al. Mechanisms of removing red tide organisms by organo-clays[J]. Environmental Science, 2006, 27(8): 1522-1530.
[11] Cao Xihua, Song Xiuxian, Yu Zhiming. Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms[J]. Environmental Science, 2004, 25(5): 148-152.
[12] Cao Xihua, Yu Zhiming. Extinguishment of harmful algae by organo-clay[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1169-1172.
[13] Yu Zhiming, Sengco M R, Anderson D M. Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays[J]. Journal of Applied Phycology, 2004, 16(2): 101-110.
[14] Jiang Zhanpeng, You Zuoliang. Progress of aggregation morphology study[J]. Water & Wastewater Engineering, 1998, 24(10): 70-75.
[15] Wang Yili, Li Dapeng, Xie Mingshu. Research and advance in flocculation morphology[J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(10): 1-9.
[16] Vahedi A, Gorczyca B. Application of fractal dimensions to study the structure of flocs formed in lime softening process[J]. Water Research, 2011, 45(2): 545-556.
[17] Li Dongmei, Tan Wanchun, Huang Mingzhu, et al. Study on fractal properties of flocs[J]. Water & Wastewater Engineering, 2004, 30(5): 5-10.
[19] Nan Jun, He Weipeng. Characteristic analysis on morphological evolution of suspended particles in water during dynamic flocculation process[J]. Desalination and Water Treatment, 2012, 41(1/3): 35-44.
[20] General Administration of Quality Supervision, Inspection, Quarantine of the People's Republic of China. GB 17378.4-2007, The specification for marine monitoring-Part 4: seawater analysis[S]. Beijing: China Standards Press, 2008: 88-91.
[25] Swartzen-Allen S L, Matijevic E. Surface and colloid chemistry of clays[J]. Chemical Reviews, 1974, 74(3): 385-400.
[26] Tombácz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J]. Applied Clay Science, 2006, 34(1/4): 105-124.
[27] Du Jianhua, Morris G, Pushkarova R A, et al. Effect of surface structure of kaolinite on aggregation, settling rate, and bed density[J]. Langmuir, 2010, 26(16): 13227-13235.
[28] Tang Hongxiao. Inorganic Polymer Flocculants and Coagulation Theory[M]. Beijing: China Building Industry Press, 2006: 35-39, 70-73.
[29] Kiørboe T, Hansen J L S. Phytoplankton aggregate formation: observations of patterns and mechanisms of cell sticking and the significance of exopolymeric material[J]. Journal of Plankton Research, 1993, 15(9): 993-1018.
海洋学报