Cite this paper:
Cai Deling, Sun Yao, Zhang Xiaoyong, Su Yuanfeng, Wu Yonghua, Chen Zihua, Yang Qian. Reconstructing a primary productivity history over the past 200 a using the sediment organic carbon content and the stable isotope composition from the East China Sea and the Yellow Sea[J]. Haiyang Xuebao, 2014, 36(2): 40-50

Reconstructing a primary productivity history over the past 200 a using the sediment organic carbon content and the stable isotope composition from the East China Sea and the Yellow Sea

Cai Deling1,2, Sun Yao1, Zhang Xiaoyong1, Su Yuanfeng2, Wu Yonghua2, Chen Zihua2, Yang Qian1
1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071,China;
2. First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
The reconstruction of paleoproductivity at home and abroad has been a hot spot in the research of marine ecology since the 1980s. However, most of the studies are in abyssal regions. Continental shelf areas are influenced more obviously by the terrigenous matter and more difficult to be studied than abyssal regions. It makes use of carbon stable isotope compositions in organic matter of modern sediments to estimate the sea-derived carbon contents. Based on this, combining the investigation data of the several representative indicators of the primary productivity in surface sediments (phytoplankton biomass, chlorophyll-a concentration, as well as the diatom content), to seek correlation between the sea-derived carbon content and the productivity index in cores. Then, the high resolution of the paleoproductivity records over 200 a can be reconstructed from the sea-derived carbon content in 3 typical columnar sediments from the southern Huanghai Sea cold eddy zone. It has important significance for studying the evolution rule of ecological environment in the continental shelf area. Controlling factors on the primary productivity evolution reconstructed for the southern Yellow Sea are discussed elementarily, it shows that the primary productivity wave elevation over 200 a is consistent with sea surface temperature trends, but its main control factor still is nutrient supply, in which land nutrients and pollutants play an important role.
Key words:    organic carbon    carbon stable isotopes    primary productivity    East China Sea    Yellow Sea   
Received: 2012-08-27   Revised:
PDF (5702 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Cai Deling
Articles by Sun Yao
Articles by Zhang Xiaoyong
Articles by Su Yuanfeng
Articles by Wu Yonghua
Articles by Chen Zihua
Articles by Yang Qian
[1] Suess E. Particulate organic carbon flux in the ocean-surface productivity and oxygen utilization[J]. Nature, 1980, 228: 260-263.
[2] Betzer P R, Showers W J, Law E A, et al. Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean[J]. Deep-Sea Res, 1984, 31: 1-11.
[3] Stein R. Surface water paleoproductivity as inferred from sediments deposited in oxic and anoxic deep water[M]// Degens E T,Meyers P A, Brasseli S C. Biogeochemistry of Black Shales. Hamburg: Selbstverlag Universitat Hamburg, 1986:55-70.
[4] Sarnthein M, Winn K, Duplessy J C, et al. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21 000 years[J]. Paleoceanography, 1988, 3(3): 361-399.
[5] 贾东国,彭平安,傅家谟.珠江口近百年来富营养化加剧的沉积记录[J].第四纪研究,2002,22(2):158-165.
[6] Yamamuro M, Kanai Y. A 200-years record of natural and anthropogenic changes in water quality from coastal lagoon sediments of Lake Shinji, Japan[J]. Chemical Geology, 2005, 218: 51-61.
[7] 邢磊,赵美训,张海龙,等.冲绳海槽中部过去15 ka来浮游植物生产力和种群结构变化的生物标志物重建[J].科学通报,2008,53(12):1448-1455.
[8] 南青云,李铁刚,陈金霞,等.南冲绳海槽7 000 a B.P.以来基于长链不饱和烯酮指标的古海洋生产力变化及其与气候的关系[J].第四纪研究,2008,28(3):482-490.
[9] McQuoid M R , Whiticar M J , Calvert S E , et al. A post-glacial isotope record of primary production and accumulation in the organic sediments of Saanich Inlet, ODP Leg 169S[J]. Marine Geology, 2001, 174: 273-286.
[10] 宁修仁,刘子琳,蔡昱明.我国海洋初级生产力研究二十年[J].东海海洋,2000,18(3):13-19.
[11] 叶曦雯,刘素美,赵颖翡,等.黄、东海沉积物中生物硅的分布及其环境意义[J]. 中国环境科学,2004,24(3):265-269.
[12] 沈志良. 三峡工程对长江口海区营养盐分布变化影响的研究[J]. 海洋与湖沼,1999,22(6):540-546.
[13] 沈志良. 长江口海区理化环境对初级生产力的影响[J]. 海洋湖沼通报,1993, 1:42-51.
[14] 鲁北伟,王荣.春季东海表层叶绿素a含量分布特征[J]. 海洋与湖沼,1996, 27(5):487-491.
[15] 刘子琳,宁修仁,蔡昱明. 杭州湾-舟山渔场秋季浮游植物现存量和初级生产力[J]. 海洋学报,2001,23(2):93-98.
[16] 王俊. 黄海春季浮游植物的调查研究[J]. 海洋水产研究,2001,22(3):56-61.
[17] 杨茜,孙耀,王迪迪,等.东海、黄海近代沉积物中生物硅含量的分布及其反演潜力[J].海洋学报,2010,32(3):51-57.
[18] 吴时国,涂霞,罗又郎,等.南沙群岛海区有机碳沉积作用与古生产力估算[J].热带海洋,1995,14(4):58-66.
[19] Grundle D S, Timothy D A, Varela D E. Variations of phytoplankton productivity and biomass over an annual cycle in Saanich Inlet, a British Columbia fjord[J]. Continental Shelf Research, 2009, 29(19): 2257-2269.
[20] Chakraborty K, Finkelstein S A, Desloges J R, et al. Holocene paleoenvironmental changes inferred from diatom assemblages in sediments of Kusawa Lake, Yukon Territory, Canada[J]. Quaternary Research, 2010, 74(1): 15-22.
[21] 杨茜,宋娴丽,孙耀.东、黄海近代沉积物中有机碳源解析及对浮游植物总量的重建潜力[J].海洋学报,2012,34(4):188-194.
[22] Cai D L, Tan F C, Edmond J M. Sources and transport of particulate organic carbon in the Amazon River and Estuary[J]. Estuarine, Coastal and Shelf Science, 1988, 26: 1-14.
[23] Tan F C, Cai D L, Edmond J M. Carbon isotope geochemistry of the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 1991, 32: 395-403.
[24] Cai D L. Geochemical studies on organic carbon isotope of the Yellow River Estuary[J]. Science in China: Series B, 1994, 37(8): 1001-1015.
[25] Ogrinc N, Fontolan G, Faganeli G, et al. Carbon and nitrogen isotope compositions of organic matter in coastal marine sediments ( the Gulf of Trieste, N Adriatic Sea): indicators of sources and preservation[J]. Marine Chemistry, 2005, 95: 163-181.
[26] Hu J F, Peng P A, Jia G D, et al. Distribution and sources of organic carbon, nitrogen, and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 2006, 98: 274-285.
[27] Zhang J, Wu Y, Jennerjahn T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: implication for source discrimination and sedimentary dynamics[J]. Marine Chemistry, 2007, 106:111-126.
[28] Zhu J R. Distribution of chlorophy-a off the Changjiang River and its dynamic cause interpretation[J]. Science in China: Series D, 2005, 48(7): 950-956.
[29] 高建华,汪亚平,潘少明,等.长江口外海沉积物中有机物的来源及分布[J].地理学报,2007,62(9):981-990.
[30] Zetsche E, Thornton B, Midwood A J, et al. Utilisation of different carbon sources in a shallow estuary identified through stable isotope techniques[J]. Continental Shelf Research, 2011, 31: 832-840.
[31] Cai D L, Shi X F, Zhou W J, et al. Sources and transportation of suspended matter and sediment in the southern Yellow Sea: evidence from stable carbon isotopes[J]. Chinese Science Bulletin, 2003, 48(Supp): 21-29.
[32] 张凌,陈繁荣,杨永强,等.珠江口外近海沉积有机质化学及稳定同位素组成的早期成岩改变[J].海洋学报,2008,30(5):43-51.
[33] 杨东方, 陈生涛, 胡均,等.光照、水温和营养盐对浮游植物生长重要影响大小的顺序[J].海洋环境科学,2007,26(3): 201-207.
[34] Solomon S, Qin D, Manning M, et al. Climate change 2007: The physical science basis // Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 996.
[35] Karl D M, Bidigare R R, Letelier R M. Long term changes in plankton community structure and productivity in the North Pacific subtropical gyre: the domain shift hypothesis[J]. Deep-Sea Research: Ⅱ, 2001, 48: 1449-1470.
[36] 傅明珠, 王宗灵, 孙萍,等.2006年夏季南黄海浮游植物叶绿素a分布特征及其环境调控机制[J].生态学报,2009,29(10):5366-5375.
[37] 高磊,李道季.黄、东海西部营养盐浓度近几十年来的变化[J].海洋科学,2009,33(5):64-69.
[38] 臧家业,汤玉祥,邹娥梅,等.黄海环流的分析[J].科学通报,2001,46(增刊):7-15.
[39] 黄邦钦,胡俊,柳欣,等.全球气候变化背景下浮游植物群落结构的变动及其对生物泵效率的影响[J].厦门大学学报:自然科学版,2011,50(2):402-410.
[40] 洪华生, 商少凌, 张彩云, 等. 台湾海峡生态系统对海洋环境年际变动的响应分析[J].海洋学报, 2005, 27(2) : 63-69.
[41] 邢磊,赵美训,张海龙,等.二百年来黄海浮游植物群落结构变化的生物标志物记录[J].中国海洋大学学报,2009,39(2):371-322.
[42] Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123) : 74-77.

Related Articles:
1.Gao Feng, Chen Xinjun, Guan Wenjiang, Li Gang.Fishing ground forecasting of chub mackerel in the Yellow Sea and East China Sea using boosted regression trees[J]. Haiyang Xuebao, 2015,37(10): 39-48