Cite this paper:
Gao Yang, Li Haitao, Jiang Chongchen, Chen Zhiyun, Li Hongjun. Taxonomy and phylogeography of Clio species based on mtCOI and 18S rRNA genes[J]. Haiyang Xuebao, 2020, 42(2): 96-105

Taxonomy and phylogeography of Clio species based on mtCOI and 18S rRNA genes

Gao Yang1, Li Haitao1, Jiang Chongchen1, Chen Zhiyun2, Li Hongjun3
1. South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China;
2. Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3. National Marine Environmental Monitoring Center, Dalian 116023, China
Abstract:
Many species of holoplanktonic gastropods have a near-cosmopolitan or circumglobal distribution, some of which are used for phylogeography and ocean acidification research. Using mitochondrial COI (mtCOI, 55 animals) and nuclear 18S rRNA (9 animals) sequence data from specimens sampled from Northwest Pacific and North Indian Oceans, and together with the sequences from GenBank, we investigated the taxonomy and phylogeography of Clio species. Four lineages were defined by mtCOI tree for C. pyramidata (Lineages A–D) and C. cuspidata (LineagesE–H), respectively. Lineage A of C. pyramidata showed a circumglobal distribution, while Lineages B, C and D had their restrained dispersal. Only Lineage A was found in Chinese seas and adjacent waters. The divergent mtCOI lineages of C. cuspidata were also phylogeographical structured. Two distinct lineages (E and F) of C. cuspidata were observed in the Northwestern Pacific, which are distributed in the south and north areas of the North Equatorial Current respectively. The K2P distances of intra-lineage were between 0 and 0.026, while the distances of inter-lineage ranged from 0.031 to 0.089. Geographic structures were not observed in C. convexa and C. recurva. The morphospecies C. pyramidata and C. cuspidata may harbour cryptic diversity. Our results also suggested that ocean currents may limit the species dispersal and gene flow.
Key words:    Clio    taxonomy    phyogeography    mtCOI    18S rRNA   
Received: 2019-04-12   Revised: 2019-06-13
Tools
PDF (35272 KB) Free
Print this page
Add to favorites
Authors
Articles by Gao Yang
Articles by Li Haitao
Articles by Jiang Chongchen
Articles by Chen Zhiyun
Articles by Li Hongjun
References:
[1] Bednaršek N, Možina J, Vučković M, et al. Global distribution of pteropods representing carbonate functional type biomass[J]. Earth System Science Data Discussions, 2012, 5(1):317-350.
[2] Hunt B P V, Pakhomov E A, Hosie G W, et al. Pteropods in southern ocean ecosystems[J]. Progress in Oceanography, 2008, 78(3):193-221.
[3] Flores H, van Franeker J A, Cisewski B, et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2011, 58(19/20):1948-1961.
[4] Howard W R, Roberts D, Moy A D, et al. Distribution, abundance and seasonal flux of pteropods in the Sub-Antarctic zone[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2011, 58(21/22):2293-2300.
[5] Bednaršek N, Harvey C J, Kaplan I C, et al. Pteropods on the edge:cumulative effects of ocean acidification, warming, and deoxygenation[J]. Progress in Oceanography, 2016, 145:1-24.
[6] Fabry V J, Seibel B A, Feely R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science, 2008, 65(3):414-432.
[7] Gardner J, Manno C, Bakker D C E, et al. Southern Ocean pteropods at risk from ocean warming and acidification[J]. Marine Biology, 2018, 165(1):8.
[8] br>Zhang Fusui. The pelagic molluscs off China coast Ⅰ. A systemic study of Pteropoda (Opisthobranchia), Heteropoda (Prosobranchia) and Janthinidae (Ptenoglossa, Prosobranchia)[J]. Studia Marina Sinica, 1964(5):125-226
[9] Robertson R. Dispersal and wastage of larval Philippia krebsii (Gastropoda:Architectonicidae) in the north Atlantic[J]. Proceedings of the Academy of Natural Sciences of Philadelphia, 1964, 116:1-27.
[10] Bieler R. Architectonicidae of the Indo-Pacific (Mollusca, Gastropoda)[M].Stuttgart:Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 1993.
[11] Bontes B, van der Spoel S. Variation in Diacria trispinosa group, new interpretation of colour patterns and description of D. rubecula n. sp. (Pteropoda)[J]. Bulletin Zoölogisch Museum, Universiteit van Amsterdam, 1998, 16(11):77-84.
[12] Hebert P D N, Cywinska A, Ball S L, et al. Biological identifications through DNA Barcodes[J]. Proceedings of the Royal Society B:Biological Sciences, 2003, 270(1512):313-321.
[13] Jennings R M, Bucklin A, Ossenbrügger H, et al. Species diversity of planktonic gastropods (Pteropoda and Heteropoda) from six ocean regions based on DNA barcode analysis[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2010, 57(24/26):2199-2210.
[14] Maas A E, Blanco-Bercial L, Lawson G L. Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding[J]. PLoS One, 2013, 8(1):e53889.
[15] Gasca R, Janssen A W. Taxonomic review, molecular data and key to the species of Creseidae from the Atlantic Ocean[J]. Journal of Molluscan Studies, 2014, 80(1):35-42.
[16] Wall-Palmer D, Burridge A K, Goetze E, et al. Biogeography and genetic diversity of the atlantid heteropods[J]. Progress in Oceanography, 2018, 160:1-25.
[17] Burridge A K, Goetze E, Raes N, et al. Global biogeography and evolution of Cuvierina pteropods[J]. BMC Evolutionary Biology, 2015, 15:39.
[18] br>Li Haitao, He Wei, Zhou Peng, et al. Molecular identification of Oliva mustelina and its morphological variation[J]. Haiyang Xuebao, 2015, 37(4):117-123
[19] Folmer O, Black M, Heah W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates[J]. Molecular Marine Biology and Biotechnology, 1994, 3(5):294-299.
[20] Vonnemann V, Schrödl M, Klussmann-Kolb A, et al. Reconstruction of the phylogeny of the Opisthobranchia (Mollusca:Gastropoda) by means of 18s and 28s rRNA gene sequences[J]. Journal of Molluscan Studies, 2005, 71(2):113-125.
[21] Ronquist F, Teslenko M, van der Mark P, et al. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3):539-452.
[22] Darriba D, Taboada G L, Doallo R, et al. jModelTest 2:more models, new heuristics and parallel computing[J]. Nature Methods, 2012, 9(8):772.
[23] Fujisawa T, Barraclough T G. Delimiting species using single-locus data and the generalized Mixed Yule coalescent approach:a revised method and evaluation on simulated data sets[J]. Systematic Biology, 2013, 62(5):707-724.
[24] Puillandre N, Lambert A, Brouillet S, et al. ABGD, automatic barcode gap discovery for primary species delimitation[J]. Molecular Ecology, 2012, 21(8):1864-1877.
[25] Drummond A J, Rambaut A. BEAST:bayesian evolutionary analysis by sampling trees[J]. BMC Evolutionary Biology, 2007, 7:214.
[26] van der Spoel S, Dadon J R. Pteropoda[M]//Boltovskoy D. South Atlantic zooplankton. Leiden, The Netherlands:Backhuys, 1999:649−706.
[27] Palumbi S R. Genetic divergence, reproductive isolation, and marine speciation[J]. Annual Review of Ecology and Systematics, 1994, 25:547-572.
[28] Chen Gang, Hare M P. Cryptic diversity and comparative phylogeography of the estuarine copepod Acartia tonsa on the US Atlantic coast[J]. Molecular Ecology, 2011, 20(11):2425-2441.
[29] Peijnenburg K T C A, Goetze E. High evolutionary potential of marine zooplankton[J]. Ecology and Evolution, 2013, 3(8):2765-2781.
[30] Goetze E, Hüdepohl P T, Chang C, et al. Ecological dispersal barrier across the equatorial Atlantic in a migratory planktonic copepod[J]. Progress in Oceanography, 2017, 158:203-212.
[31] Toole J M, Millard R C, Wang Z, et al. Observations of the pacific north equatorial current bifurcation at the Philippine coast[J]. Journal of Physical Oceanography, 1990, 20(2):307-318.
[32] Hunt B, Strugnell J, Bednarsek N, et al. Poles apart:the "bipolar" pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans[J]. PLoS One, 2010, 5(3):e9835.
[33] Hebert P D N, Stoeckle M Y, Zemlak T S, et al. Identification of birds through DNA barcodes[J]. PLoS Biology, 2004, 2(10):e312.
[34] br>Li Qi, Liu Jun, Kong Lingfeng. Species concept, species delimitation and species identification[J]. Periodical of Ocean University of China, 2014, 44(10):57-64
[35] br>Lin Senjie, Wang Lu, Zheng Lianming, et al. Current status and future prospect of DNA barcoding in marine biology[J]. Haiyang Xuebao, 2014, 36(12):1-17
[36] Avise J C. Phylogeography:The History and Formation of Species[M]. Cambridge (Massachusetts):Harvard University Press, 2000:447.
[37] Avise J C. Molecular markers, natural history and evolution[M]. 2nd ed. Sunderland (Massachusetts):Sinauer Associates, 2004:541.
[38] Wiemers M, Fiedler K. Does the DNA barcoding gap exist?-a case study in blue butterflies (Lepidoptera:Lycaenidae)[J]. Frontiers in Zoology, 2007, 4:8.
[39] Ortman B D, Bucklin A, Pagès F, et al. DNA barcoding the Medusozoa using mtCOI[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(24/26):2418-2156.
[40] br>Liu Qingqing, Dong Zhijun. Population genetic structure of Gonionemus vertens based on the mitochondrial COI sequence[J]. Biodiversity Science, 2018, 26(11):1204-1211
[41] Bucklin A, Wiebe P H, Smolenack S B, et al. DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea)[J]. Journal of Plankton Research, 2007, 29(6):483-493.
[42] Durbin A, Hebert P D N, Cristescu M E A. Comparative phylogeography of marine cladocerans[J]. Marine Biology, 2008, 155(1):1-10.
[43] Radulovici A E, Sainte-marie B, Dufresne F. DNA barcoding of marine crustaceans from the estuary and gulf of St Lawrence:a regional-scale approach[J]. Molecular Ecology Resources, 2009, 9(S1):181-187.
[44] Marlétaz F, Le Parco Y, Liu Shenglin, et al. Extreme mitogenomic variation in natural populations of chaetognaths[J]. Genome Biology and Evolution, 2017, 9(6):1374-1384.
[45] Hubert N, Meyer C P, Bruggemann H J, et al. Cryptic diversity in indo-pacific coral-reef fishes revealed by DNA-barcoding provides new support to the Centre-of-overlap hypothesis[J]. PLoS One, 2012, 7(3):e28987.
Haiyang Xuebao